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What does it mean to represent?
Mental representations as
falsifiable memory patterns
Eloy Parra-Barrero1, Yulia Sandamirskaya2

Representation is a key notion in neuroscience and artificial intelligence (AI).
However, a longstanding philosophical debate highlights that specifying what
counts as representation is trickier than it seems. With this brief opinion paper
we would like to bring the philosophical problem of representation into attention
and provide an implementable solution. We note that causal and teleological ap-
proaches often assumed by neuroscientists and engineers fail to provide a satis-
factory account of representation. We sketch an alternative according to which
representations correspond to inferred latent structures in the world, identified
on the basis of conditional patterns of activation. These structures are assumed
to have certain properties objectively, which allows for planning, prediction, and
detection of unexpected events. We illustrate our proposal with the simulation
of a simple neural network model. We believe this stronger notion of represen-
tation could inform future research in neuroscience and AI.

Cognition is often described as computation over representations to yield behaviour
(Gallistel, 1990; Barack and Krakauer, 2021). Although some might disagree with this
explicit formulation, the notion of representation certainly plays a central role in the
study of natural and artificial cognition. Neuroscientists invoke it when discussing al-
most all aspects of cognitive brain function, from sensory processing to learning and
memory or decision making (e.g., Kriegeskorte et al. (2008), Quiroga (2012), Knutson
et al. (2005)). Perhaps neuroscientific research in spatial cognition highlights this point
most clearly. Over the past few decades, researchers have uncovered a zoo of neu-
ronal cell types said to represent all sorts of spatial properties: position, heading direc-
tion, speed, the presence of borders, objects, goals, etc. (Hartley et al., 2014; Bicanski
and Burgess, 2020; Parra-Barrero et al., 2021). In machine learning, researchers also
concern themselves with “representation learning” (Bengio et al., 2014). However,
philosophers point out that it is not at all trivial to give a naturalistic account of repre-
sentation or aboutness. What makes my desire to drink tea be about or directed at tea,
as opposed to coffee, or to nothing at all? After all, stones and trees and hearts are not
about anything, they just are what they are. As Nicholas Shea puts it, the problem of
representation is to explain how states of brains or artificial systems manage to reach
out and be about anything outside of themselves (Shea, 2018).

A naive solution to this problem is to say that some cognitive system’s representational
vehicle, R, (e.g., the activation of a neuron) represents some state of the world, S,
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because R is caused by S and is thus indicative of it (Adams and Aizawa, 2021). How-
ever, this is clearly not enough. Smoke is often caused by, and is thus indicative of
fire, but it does not “represent” fire in any meaningful way. A problem with this example
seems to be that smoke does not do anything relevant within a broader system. Could
we, perhaps, fix this by requiring that a representational vehicle, R, influences some
other part of the system it belongs to in driving a response to S? Think of a row of
falling dominoes in a Rube Goldberg machine. The fall of the second tile is indicative
of the fall of the first, and triggers the fall of the third. Could we then say that the fall
of the second tile “represents” the fall of the first tile to the third? Somehow, this ex-
ample still falls short of defining a representation. To explain why the third tile falls,
we only need to consider the fall of the second. This is so because whatever impact
the first tile had, it is already contained in the fall of the second tile. Thus, we do not
gain anything by saying that the second tile represents the first. If we want to claim
that R represents S, R should not already causally imply the occurrence of S, because
then S would become superfluous in the explanation. This means that R and S should
be causally decoupled, with R being able to represent S even in S’s absence. This
causal decoupling is the key to representations and the basis for two features which
are generally regarded as the hallmarks of ‘true’ representations. The first one is the
ability of representations to participate in sophisticated cognitive capacities such as re-
membering the past, imagining fictitious events, or predicting the future. The second
one is that the use of representations is error-prone. Since R represents S, but is not
necessarily caused by it, sometimes R might misrepresent the state of the world as
being S (Dretske, 1986; Fodor, 1990). Your mental representation of ‘snake’ might be
triggered by the sight of a piece of rope, leading you to falsely believe that there is a
snake in front of you. This highlights that representations are “normative”. They are
supposed to indicate something quite specific, and they can get it right or wrong. Here
is where things get complicated, because, what does it mean for a part of a system to
be supposed to indicate something?

A common reply to this question involves invoking some function or purpose (“telos”,
in ancient Greek, from which the name of this approach, “teleosemantics”, is derived)
(Neander and Schulte, 2021; Baker et al., 2021). R is supposed to indicate S because
that is what enables the ‘proper’ functioning of the system that R was selected for. For
instance, some fly-detecting neuron in the brain of the frog is supposed to indicate flies
because that is what enables the proper feeding behavior of the frog that the neuron
was selected for throughout evolution. Thus, if a frog is tricked into throwing its tongue
at moving black dots on a screen, the fly-detecting neuron would have misrepresented
the dots as flies, or so the story is supposed to go.

A problem with the teleosemantic approach is that representations tend to become de-
fined in historical terms (e.g., the activation of fly-detecting neurons having co-occurred
with flies in previous generations of frogs). This history is external to the cognitive sys-
tem that contains the representation, and therefore cannot play a causal role within it
(Bickhard, 2009). It might be useful to describe the fly-detecting neuron as represent-
ing flies, but the representing is not doing any causal work. It would drop out of a causal
explanation just like the first tile in the example of the dominoes. Furthermore, because
this history is external to the cognitive system, it is only an external observer who can
grasp it. So for R to represent S, we would need another observer that can already rep-
resent R, S and the ways in which they have been related to each other in the past. But
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this would lead to an infinite regress of interpretative homunculi. For these reasons,
Mark Bickhard insists on the need for representations to have their representational
content (what the representation is about, which defines the representation) defined
internally within the cognitive system that has them (Bickhard, 2009). This way, the
cognitive system can evaluate whether it is using a representation correctly or not, and
this could account for the normativity of representations. In other words, we could say
that R is supposed to indicate S for a system to the extent that the system itself has
the ability to detect erroneous attributions of R. Your mental representation of snakes
is supposed to indicate snakes, and not ropes, precisely because when it is caused by
ropes, you can, at least in principle, later recognize the mistake.

This leads us to the notion that representations correspond to inferred latent structures.
Locked up in the skull, the brain does not have direct access to the identity of objects
and processes outside (e.g. the rope or the snake). These objects and processes are
therefore ‘latent’ or ‘hidden’ structures (also referred to as variables, factors or causes
[of the sensory input]), whose presence can only be inferred based on noisy and incom-
plete sensations. Note that by inference we do not mean the conscious and effortful
process we engage in every other day when solving puzzles. Following Helmholtz, we
conceive of inference as a pervasive and mostly unconscious process that underlies
all of perception (von Helmholtz, 1867). The key about inference is that the inferred
latent structures are defined internally within the cognitive system, in terms of other
latent structures and, ultimately, in terms of sensorimotor primitives1. For example, we
may decide that “snake” refers to limbless, scaly and elongated animals that some-
times bite. “Bite”, in turn, could be defined in terms of certain movements of a mouth
relative to a body, pain, etc., but perhaps “elongated” could already be a sensorimotor
primitive based on a certain pattern of eye movements and retinal inputs. However
they are defined, latent structures are assumed to have all of their components objec-
tively, regardless of whether they are currently apparent or not. For example, when
you infer that some object lying ahead is a snake, you assume that it could move and
bite you—even if it is not doing it yet. This allows you to plan actions that involve
those hidden properties. For instance, you might decide to take a detour around the
apparent snake. The assumption that certain properties are present also allows you to
falsify your hypothesis and recognize you were mistaken. If the snake turns out to be a
rope, you may realize that what you thought to be the case –that this is an animal that
could move and bite you– was false. Thus, identifying representations with inferred la-
tent structures, we can account for how representations are supposed to indicate what
they do from the perspective of the cognitive system itself, enabling representational
content to play a causal role.

An account of representation based on inference therefore looks promising. But are
there other reasons for postulating that cognitive systems infer latent structures? In
principle, a cognitive system could get by without doing this. For example, the system
could use a huge look-up table that tells it how to react to every possible combination
of inputs. Improving on this slightly, the system could also use a very large feedfor-
ward neural network with only one hidden layer, thanks to the universal approximation
theorem (Hornik et al., 1989). However, this will not work in practice because the num-
ber of possible input-output mappings is too vast. Luckily, there is a lot of structure

1The sensorimotor primitives are not representational in the strict sense that we are considering here,
but they correlate with things in the world, and this allows the representational system to be grounded.
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in the world that can be leveraged to find more compact solutions. The world seems
to instantiate a compositional hierarchy, in which higher-level entities or structures are
composed of lower-level ones (LeCun et al., 2015). Societies contain people, which
contain faces, which contain eyes, which contain pupils. Structures at all levels appear
repeatedly. Societies contain people, but so do riots and ballet companies. People
have faces, but so do fish. How to recognize the presence of some structure, and what
that presence affords you is largely preserved across different manifestations of that
structure. Thus, it would be a waste of time and resources if we had to learn how to
recognize and interact with each structure independently for each type of complex it
appears in. It is much more efficient to abstract away from particular occurrences and
recognize the existence of this recurring latent structure. Moreover, such recurring
structures, when applied across different domains could be the basis for metaphorical
thinking and the extrapolation of past experiences to novel situations—arguably some
of our most sophisticated cognitive abilities.

Interestingly, organizing latent structures in a hierarchy confers one further practical
advantage. We know many different facts about each structure. We know how people
look and sound like, how their knees bend, how they break your heart. Thinking about
one of these facts, we can retrieve any other when relevant. This ability requires the
capacity to propagate activity from the representation of each fact to that of each other
fact (guided and constrained by the current context so that we do not get flooded by
all possible associations). To accomplish this without a hierarchy, if we knew N facts
about some structure, we would need N2 (all-to-all) connections between their repre-
sentations. With a hierarchy, we would just need 2N connections, going back and forth
from the representation of the structure to those of each of its components.

Deep neural networks purport to exploit such a compositional hierarchy by represent-
ing increasingly more complex latent structures or factors across layers of a neural
network (Bengio et al., 2014). For instance, (Higgins et al., 2021) claim that a varia-
tional autoencoder fed with images of faces learns to represent latent structures such
as the gender or the age of a face. So do deep neural networks infer latent structures,
thus accounting for representations? We do not think so. As we saw above, what is
required to talk of representations is some justification for how some state is supposed
to indicate something, even when it is not being caused by it. A possible justification
involves the system assuming that certain hidden properties are present, which can
be proved wrong by the system itself. However, there is none of this in a feed-forward
neural network. A feed forward network is, in the end, a mathematical function that is
sensitive to the presence of some pattern in the input. In the example just mentioned,
the network could have learned to recognize the visual appearance of age, perhaps
just wrinkliness and longer ear lobes. This wrinkliness is nothing hidden that the net-
work could be mistaken about, it is either there, “in plain sight”, or it is not. Thus, if
the network, for example, classifies a young face with painted wrinkles as “old”, the
network did not make any mistake from its own perspective. The network just correctly
indicated the presence of wrinkles.

What about approaches that focus on Bayesian inference? In these approaches, the
brain is purported to (or artificial systems are constructed such that they) learn prob-
abilistic generative models of the environment. These models are then used to infer
the most probable causes of the inputs (Fiser et al., 2010; Tenenbaum et al., 2011).
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Often, the inferred causes will correspond to latent structures whose identity the cog-
nitive system could be mistaken about. But this is not necessarily so. Consider a toy
world where all an agent can do is look at one of two balls of different colors (a red ball
and a green ball), and then ‘infer’ which of the two it is looking at. Even though this is
a trivial task, nothing prevents one from applying Bayesian inference to solve it. How-
ever, in this kind of situation, the inferred causes (e.g., ball A and ball B) are not much
more than labels for visible properties (e.g., redness and greenness). As in the case of
the network detecting wrinkles, the inferred causes here do not refer to anything with
hidden properties that the agent could possibly be mistaken about. Thus, Bayesian
inference does not seem to get to the crux of what is required to infer latent structures
and form proper representations.

To develop an approach to representation that has the required properties, we must
reflect on what it means for something to be a latent structure. Something is latent
because it does not manifest itself completely, at least not all of the time. Take the
example of salt. Its various aspects reveal themselves under different circumstances.
When looking at it, you see something white. When putting it into your mouth, you taste
saltiness. When eating too much, you get thirsty. When adding it to meat, it helps to
preserve it. These are different patterns of interaction between the latent structure that
we call salt and ourselves, other latent structures or sensorimotor primitives. Each
pattern of interaction is composed of certain elements. For example, {‘tasting’, ‘salty’}
is one pattern, and {‘ate’, ‘too much’, ‘thirsty’} is another. When a certain pattern of
interaction is taking place, as recognized by the fact that a certain fraction of its com-
ponents are present, the whole pattern is expected to be there. Thus, under the hy-
pothesis that something is salt, if ‘tasting’ is present, so should ‘salty’, and vice-versa;
if {‘ate’, ‘too much’} is present, so should ‘thirsty’, or if {‘ate’, ‘thirsty’} is present, so
should ‘too much’. Perhaps we can call patterns like {‘ate’, ‘too much’, ‘thirsty’} con-
ditional bistable patterns. The patterns are conditional on the assumption that salt is
involved in explaining the situation. Based on this condition, the elements of the pat-
tern should either be mostly absent (the pattern is ‘OFF’) if the interaction is not taking
place, or mostly present (the pattern is ‘ON’) if the interaction is taking place, but not
somewhere in between. Thus the patterns are bistable. Latent structures seem to be
defined by sets of such conditional bistable patterns.

We could then conceive of cognitive systems that explicitly encode and store these
conditional bistable patterns in memory, and use them to infer latent structures. A
good heuristic for the inference process could be that a latent structure is recognized
to be present if at least one of its conditional bistable patterns is ON, and none of them
is in an unstable state. For example, you may infer that something is salt based only
on looking at some white grains. If you then taste them and they turn out to not to be
salty, the interaction pattern characterized by {‘tasting’, ‘salty’} is recognized as being
applicable (half of elements are present) but failing to obtain (‘salty’ is missing), and
you should discard the hypothesis that what you had in front of you was salt. Missing
elements are not the only kind of negative evidence for your hypothesis. The presence
of unexpected elements is equally revealing. Salt should not combust, or grow mold,
or make people turn blue. If any of these things happen, you will also detect a violation
and realize that you were not dealing with salt. However, there are infinitely many things
that should not happen in any given context, so it is impossible to explicitly learn all of
them. Thus, observing anything that deviates from the relatively small set of known
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conditional bistable patterns should by default count as evidence against something
being what you thought it was. These combinations of conditions for the (simplified)
example of representing salt are summarized in Fig. 1:

salt

looking
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tasting

salty

salt

looking

white

tasting

salty

salt

looking

white
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salty
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!

!
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Figure 1: Schematic representation of the concept of salt. A node that represents a
white salty substance (“salt”) is defined by two conditional bistable patterns: {‘tasting’,
‘salty’} and {‘looking’, ‘white’}. Each element can be present (blue) or absent (red). If
half of the elements in the pattern are present, the pattern becomes applicable (gold).
It is correct to infer that “salt” is present when at least one of the patterns is applicable
and complete, no pattern is applicable but incomplete, and no unexpected elements
appear.

The unexpected sensations that count as evidence against an inferred latent structure
are those that are not accounted for or “explained away” by any of the currently inferred
latent structures. A natural way of detecting them is using something akin to predictive
coding (Huang and Rao, 2011), where error units indicate the difference between the
inputs and top-down predictions based on inferred latent structures. In our framework,
such error units should be of two kinds to detect the two kinds of violations described
above: either some element should be present but is not, or it is present but it should
not be.

To make our proposal more concrete, in Fig. 2 we sketch a neural circuit that fleshes
out the ideas put forth above, relying on the two types of error units. The neural cir-
cuit shown in the figure implements the computations required for the inference of the
concepts “salt” and “sugar”. The concept units representing these two inferred latent
structures (blue circles in the figure) can self-sustain their activation through recurrent
self-connections and compete with each other for explaining the inputs via lateral in-
hibition. “Salt” becomes active when either “salty” and “tasting” and/or “looking” and
“white” are active. These conjunctions are detected by nonlinearities in dendritic com-
partments (depicted as small colored circles). This mechanism is inspired by the find-
ing that dendrites can implement nonlinear functions, making individual neurons much
more complex computing structures than conventionally assumed in artificial neural
networks (Beniaguev et al., 2021). The concept units at the bottom level of the small hi-
erarchy in our example (“salty”, “taste”, etc.) have corresponding error units that signal
whether the concept is active but should not (orange circles), or whether it is not active
but should be (green circles). These units also have nonlinear dendritic compartments
which only become active when both of their inputs are active. When the patterns are
in a stable state (for example, when “salt”, “salty” and “tasting” are all active, or when
“salt” is active but both “salty” and “tasting” are not), the excitation and inhibition ar-
riving at the error units cancel out and the error units remain silent. Otherwise error
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units become active, indicating what is missing or what should not be present. The
sum of all error units inhibits the concept units at the top level. One can imagine this
network motif being repeated across multiple layers. The “salt” and “sugar” units could
have error units themselves, which would receive top-down input from a layer higher in
the hierarchy that contains, for instance units representing “anchovies” or “cake”. The
lower part of Fig. 2 shows the activation of the network structures when representing
different perceived situations.
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Figure 2: A neural circuit implementation of representations as sets of condi-
tional bistable patterns. A: The neural network implements the computations re-
quired for the inference of “salt” and “sugar”. See main text for details. B: A simulation
of the network in action. Blue, orange and green correspond to the activation of the
concept and error units, respectively, following the same color code as above. Note,
however, that when the orange unit is active, so is the blue one ‘underneath’. The code
for the simulation can be found here.

The presented neural circuit is just an exemplary one. We provide this suggestion
here to facilitate the understanding of our proposal with a concrete example, and to
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stimulate further thought about possible implementations. Regardless of the details, a
neural circuit that relies on calculating different types of errors between observed and
expected phenomena brings important advantages for cognitive and machine learning
architectures, apart from making proper representations possible. For one, checking
for things out of the ordinary is arguably one of the hallmarks of common sense—
something that current standard approaches in AI are notoriously bad at. This check
for consistency could happen as cognitive agents passively receive inputs and form
representations about them, but it could also happen actively. If time permits, or if
correct identification is important, agents could trigger actions to check the validity of
their emerging representations (e.g. tasting the white substance to make sure it is salt
and not sugar). Second, in some cases, the error signals themselves could be used
to drive behavior. For instance, if you are trying to cure meat, one of salt’s error units
could light up, signalling that salt is required and missing so that you can go and fetch
some. And third, the error signals are useful for guiding attention and learning.

To conclude, we have proposed that mental representations can be decoupled from
the input and can misrepresent (from the point of view of the system itself) because
they are the result of a fallible process of inferring latent structures. Inferring these
latent structures is necessary in practice, as it leads to a much more compact and flex-
ible cognitive system that can plan actions based on hidden properties of the inferred
latent structures. Deep learning and Bayesian approaches both provide valuable com-
ponents for the construction of such a cognitive system. The former offers effective
ways of learning hierarchies of increasingly more complex structures, whereas the lat-
ter offers sophisticated probabilistic reasoning capabilities. However, we argue that
additional mechanisms are required to ensure that cognitive systems truly infer latent
structures they could be mistaken about. These mechanisms could build on our pro-
posal that latent structures are defined in terms of sets of conditional bistable patterns.
Explicit knowledge of these patterns could be used in the inference process, where the
detection of unexpected elements would also play a fundamental role.

We hope these views will help move the field of AI over to systems that build ‘true’
representations, which would lead to more intelligent systems capable of reasoning,
abstraction and autonomous learning. From the neuroscience perspective, we should
be more careful not to call every signal that correlates with the input a representation.
A tuning curve or a receptive field is not enough. We should therefore design experi-
ments that test whether representations can be decoupled (for example, for their use
in planning or imagination), and whether they can elicit error signals. The proposed
computational structure could also help explain and be validated by the connectivity
patterns across cortical layers of the neocortex that form what has been dubbed a
“canonical microcircuit” (Douglas et al., 1989). The wiring of neurons across layers of
the neocortex seems to perform some kind of predictive-coding computation with top-
down, bottom-up, and lateral connections and signal flow (Bastos et al., 2012), which
might be the biological neural substrate behind the ability of the brain to represent items
in the external world in the deep and fundamental way we have argued for in this paper.
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Gardener comments
Sander Van de Cruys:

This paper presents a clear-headed & concise overview of the issue of representation
in psychology/neuroscience. I very much liked the framing of this in terms of inference,
predictive coding, and latent structure. Seems on the right track to me. One small note:
There is some literature on predictive coding and representation already which the
author might be interested in (and could refer to). For example, see Rutar et al. (and the
references therein). This one also includes a discussion on the issue of ”decoupling”
(which seems in line with the current author’s ideas, but includes an interesting role for
precision-weighting).

Michael J Berry II:

This paper presents a highly original definition of the term “representation.” Many neu-
roscientists use an unexamined notion in which neurons represent information when
their activity correlates with external variables. However, this definition suffers from
absurdities when applied more broadly, such as the atoms in a rock “representing” air
pressure. The authors argue that a definition of representation that relies on causality
will suffer from such situations where the term has no explanatory power.

Instead, the authors propose a framework that starts with a typical feedforward hier-
archy that creates higher-level concepts as a combination of lower-level concepts but
adds to it a feedback pathway that implements a set of consistency checks. These
consistency checks can be thought of as predictions of other properties entailed by the
higher-level concepts; these properties have, presumably, been learned through prior
experience.

This framework resolves philosophical problems associated with some notions of rep-
resentation, while also suggesting a concrete network mechanism. This mechanism
both serves as a basis for experimental predictions as well as having the potential to
be useful to AI systems.

However, the widespread use of the unexamined notion of representation in sensory
neuroscience suggests that perhaps the enhanced concept proposed has a different
name. Maybe “cognitive representation”? Furthermore, the specific feedback circuit
proposed here would, in general, need to be learned via experience, so further thoughts
on what learning rules would accomplish this goal would help extend this concept.

Daniel Sabinasz:

The authors present a proposal for naturalizing representational content. They start by
reviewing causation-based theories of representation, and reject them via an example
of falling dominoes: The fall of any given domino Di can be completely causally ex-
plained by the fall of the previous domino Di−1, which can in turn be explained by the
fall of domino Di−2. Thus, if domino Di−1 were said to represent the fall of domino Di−2
to Di, this notion of representation cannot do any causal explanatory work. In order
for Di−1’s representing Di−2 to do any explanatory work, Di−1 would have to be causally
decoupled from Di−2, so that the occurrence of Di−1 does not causally imply the occur-
rence ofDi−2. This is taken to show that a representational vehicle R can only represent
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some state S in a causally efficacious way if R’s occurrence is causally decoupled from
S. I find the domino example a little hard to follow and to relate to representations in
cognitive systems. An example pertaining to vehicles that participate in cognitive ca-
pacities while not being causally decoupled from what they purportedly represent may
have been easier - e.g., a feedforward neural network.

The authors go on to argue that teleo-semantic approaches fail to provide a notion of
causally efficacious representations, given that their representational content is defined
historically and may thus not have a causal effect in the cognitive system here and
now. Still, they grant that such approaches may be useful to describe(!) vehicles as
representing something. In my opinion, the authors make implicit assumptions here
regarding the optimal level at which causal interaction ought to be described - especially
with respect to the admitted time scale of causal interactions, and with regard to how
the cognitive system is to be circumscribed spatially and temporally. I contend that it is
perfectly legitimate to say that the “snake neuron”’s representing snakes in evolutionary
history is causally involved in the cognitive system’s flight behavior in the here and now.
I simply adopt a different scientific level of description / perspective in saying this - a
perspective that I contend to be neither generally less nor generally more useful than
the perspective that the authors adopt.

Next, the authors propose a theory of representations as inferred latent structures,
which have the property that the representational content is defined inside the cogni-
tive system itself - by virtue of relating a concept’s representational content to other
concepts internal to the system. That notion of representation is then argued to be
causally efficacious, given that the cognitive system itself can identify that the repre-
sentational vehicle misrepresented, and act accordingly.

The notion of representation as hierarchical latent structure is then backed up by theo-
retical arguments, evidence, and a computational model. The necessity of completable
or falsifiable incomplete patterns and recurrent connection is identified, refuting the
claim that feed-forward neural networks or Bayesian models can have representations
that are causally efficacious in the here and now.

While I contend this to be a useful notion of representation, I do not agree with the
authors that it is the only useful notion of representation that can be causally efficacious
at some level of description, for reasons laid out in the second paragraph - namely, the
commitment to a particular scientific level of description that I cannot quite make explicit
yet based on the present paper. To mimic the authors’ line of argumentation in refuting
teleo-semantic notions of representation, I could say that the state of the atoms in the
cognitive system at any given moment in time is completely causally explained by the
prior state of those atoms and the laws of physics. Therefore, the representational
content of latent inferred structures cannot do any additional causal explanatory work.

Despite this single point of criticism, I’m generally positive about this paper, given that it
deals with the right questions and treats them thoroughly and in a well thought-through
manner. Even in disagreement about some points, I still got a lot of food for thought
out of the reading.

R. Sal Reyes:

This is an interesting exploration of how a system might create mostly-accurate &
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causally-potent internal representations of things that exist in the outside world. It
seems that this sort of model could have some useful applications within AI—helping
such systems to better ”see” things as more than just objects that are a collection of
physical attributes. However, I don’t believe it truly correlates to how these kinds of
systems likely function in a human brain (an entity that ultimately works very differently
from AI neural networks, which are tasked to accomplish far narrower sets of goals—to
put it mildly).

First, from my perspective, the “latent structures” that are referred to here (which carry
all of the relevant content that makes any “representation” capable of being “about”
something) are words and language. And if language is, indeed, the basis of such
“representations” having meaning, then the mix of reflexive & deliberative, sensory &
cognitive processes that combine to produce any singularly & momentarily perceived
mental “representation” are ultimately likely to be more complex than the ”conditional
bistable patterns” model presented here. (Such as the almost absurdly complicated
model of language-based cognition presented by Halliday &Matthiessen in ”Construing
Experience Through Meaning.”)

One quick example that shows just one of the many aspects of this process (in a human
brain) that this model leaves unaccounted for… Out of the corner of your eye, you
notice a dark blur rustle behind the ferns in your yard. In reality, this blur is the product
of a simple shadow. Let’s say that under normal circumstances, this exact sensory
experience automatically “represents” the dark blur correctly as a shadow, allowing
you to perceive it as a shadow & have any appropriately-related thoughts about it,
e.g., “what a lovely backdrop for the fern.” However, if your longtime & beloved black
cat has recently disappeared, this exact same sensory experience might automatically
“represent” the dark blur as your black cat, allowing you to literally (& cruelly) see your
lost cat out of the corner of your eye behind the fern—only to realize moments later
that your current obsession over your missing companion is leading you to incorrectly
(but literally) see them in every dark blur.

If I’m interpreting the model here correctly, it appears that this exact same sensory
experience should always produce the same initial “representation” (correct or not)
regardless of any currently missing feline friends. (Since there is no change in any
of the sensory pattern data, nor any difference in any concept units that are active
but shouldn’t be, or vice versa.) In fact, since the normal scenario where your cat *is
not* missing is technically a circumstance in which seeing them in your yard is *more*
likely to be accurate, according to a model based on these principles, you should be
more prone to misperceive the blur as your cat in normal circumstances—although my
personal experience with missing pets (and those I’ve heard from others) has demon-
strated the opposite. In contrast to all this, a language-based associative & cognitive
system has several avenues for both correctly & incorrectly “representing” & perceiv-
ing the exact same data in different ways based on any number of circumstantial or
emotional factors.

Anonymous1:

The view that ”true” mental representations should be the results of an inference pro-
cess is new, as far as I know. However, I am not satisfied by the node network model
the author proposed, because I don’t see how it is different from a traditional artificial
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neural network. The activities of this network can still be described fully mechanistic
and the content of each node (being white, saltiness, sugar, etc.) still seems to be
assigned by an outside observer. I don’t think the author solves the problem that any
definition of ”true” representations should explain why a certain brain state is supposed
to represent other things. Nevertheless, it is still a novel idea and deserves to be read
by the science community. However, I think the authors should provide more back-
ground explanations about all the philosophical terms and arguments they mentioned
in the first section.

Ted Wade:

I have a feeling that there are a lot of open, unexplored currents here from philosophy,
cognitive science and AI. That and the connection from theory to practice make the
paper worthwhile.

I have a couple of issues.

The paper gives its worked examples in cases where representations are basically
like so-called ”concrete nouns”, whose corresponding objects are identifiable through
the senses. The inferred latent structures are sort of like attributes or properties of
the representation, and the examples use some properties (like “salty”) that can be
determined through the senses. So, in the theory representations are *of a different
kind* from latent structure properties.

But, surely representation is not just restricted to representing concrete objects. Don’t
we also have to “represent” other kinds of things, like processes or actions (warming,
decay, tasting, looking) and attributes (saltiness, whiteness)? And can’t some of these
representations *also be* latent structure properties?

This becomes more of an issue when we talk about using representations in memories
or counterfactuals, when direct sense impressions are not available. Don’t we then
have to rely on representations of tasting and saltiness? And the same would be true
if it were someone else’s sense impressions being used as evidence for/against the
applicability of a representation

I admit much ignorance of the ways in which representation has been defined and
argued in the fields relevant to this paper. However, it might be helpful to explain to
readers how the paper’s definition of a representation is not circular in the sense of
defining a representation in terms of more representations.

My second concern is whether “checking for things out of the ordinary” has been suffi-
ciently explained. Given the size of the set of un-ordinary things, how do we decide that
a new observation is actually relevant to the use of a representation? For a concrete
object like a pile of salt, some relevance can be signaled by physical and temporal
co-location of the pile and unexpected sensations, like a color change, a smell, or dis-
solving in water. What if a pile of salt kills grass, or stains cloth and then gets washed
away before we see it? Are there other or competing signals of relevance besides
co-location, and if so, how could the theory incorporate them?
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Dan James:

A compelling and superb co-ordination of accurate philosophical notions concerning
mental representation and the possibilities of translating these into practical strategies
for building computational structures. Consequently, though fairly brief and concise,
this paper is an exemplar of Applied Philosophy and one that has potentially important
implications for AI research. I found the arguments were developed convincingly and
clearly, with good explanatory graphics and the whole paper to be well-researched. I
have no hesitation in recommending this paper for publication as, at the very least, it
is clearly a good discussion point/seed for future cognitive science.

Fred Nix:

I am only an interested layman in this area, but I would strongly recommend this article
for publication in Seeds of Science. It seems to suggest a novel idea and the possibility
of experimenting on a very interesting problem.

There are a couple of observations that popped out at me when I read this. First, is a
similarity to some of the structures discussed by Marvin Minsky in The Society of Mind.
The second are the similarity to ideas in Wittgenstein’s Philosophical Explorations.

As to Minsky, the latent structures have a similarity to his “language frames” or the
“frame” idea in general (Minsky, Society of Mind, 1986, p. 261). Our minds run a
comparison to pre-existing, similar frames, and try to plug in different expected values
into the empty terminals to see if there might be a good fit. Minsky looks at the sentence
“Mary was invited to Jack’s Party,” and speculates it raises the “party invitation” frame
in the mind. Which then prompts the mind to try to fill in the blank terminals: “Who
is the host?”, “Who will attend?”, “What present should I bring?”, “What clothing will I
wear?” Certain terminal assignments are assigned by default based upon experience,
but could be accepted, replaced or objected for the particular situation.

The way your latent structure model of comparing expected to observed variables looks
to me to have much promise, as it gets away from the untestable philosophical mess
and opens up a whole slew of statistical analysis tools that can be used in machine
learning.

Second, was that I really like the similarity to Wittgenstein’s Philosophical Investiga-
tions. He starts out his book with a similar philosophical mess coming out of Augus-
tine’s work where every word has a meaning correlated with it, and the meaning is the
object for which the word stands. But Wittgenstein’s approach, and yours, is much
more flexible and I think closer to how our actual minds function. The emphasis is on
the way language functions in context, the famous “language game.” There is no per-
fect representation for each word. You have to identify the role the work plays in the
particular language game at issue. What is my frame? What latent structures could
be deployed that would work with this game? Is my split-second hypothesis on the
rope vs. snake correct in the particular game I find myself in? In potentially danger-
ous matters, should I change my p-value and take a bigger risk on being wrong? Just
fascinating how this could be done in machines.

One small editing thing that threw me off a bit was in Table B where the numbers were
not consistent left to right. Some descriptions didn’t have numbers, and I was looking
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for numbers to keep guiding me through the table.

Anyway, great job, I’d really like to hear how this idea works out!

Michael M. Kazanjian:

A useful collection of insights into representation and cognition. The author does not
mention Kant, though Kant probably is a crucial element in representation theory: we
know via categories instead of the thing itself or an objective reality out there. Thanks,
Michael M. Kazanjian.

DK:

I enjoyed reading this article. It should be a valuable addition to the debate on mental
representations.

Mark:

This is interesting and clearly written. There are a few small typos, most notably, casual
should be causal in at least one place.

Mike Wolf:

Here are some comments from my review of ”What does it mean to represent? Mental
representations as falsifiable memory patterns.

I think that the paper contains ideas worth cultivating. I was particularly interested in
the ideas of “representation” and of “inferred latent structure.” By happy coincidence,
I have been doing some experiments with GPT-3. I think the paper might benefit from
considering its premises as applied to GPT-3.

GPT-3 is considered to be a kind of AI. It seems to have knowledge of the world, but
it is designed as a ”language model” that is able to predict next sentences from con-
text. I am not an expert on GPT-3, but from what I have learned, it seems that GPT-
3’s representation can be understood by analogy to the way a hologram represents a
scene. A hologram is a two-dimensional representation of an arrangement of objects in
a three dimensional space. An image of the scene can be reconstructed from the holo-
gram. Depending on how the hologram was created the reconstruction will represent
the scene with more or with less detail. The hologram is thus a two-dimensional repre-
sentation of the scene, and the reconstruction is a kind of re-presentation of the original
scene. Although the objects occupy discrete areas in the 3D space of the scene, the
objects are not represented in the discrete part of the hologram. If a section of the holo-
gram is corrupted or removed, then detail in the re-presentation is lost, but no object
is removed. One might say that all the objects seen in a displayed holographic image
are latent inferred structures.

It seems to me that GPT-3 works in a similar way. GPT-3 does not model concepts,
rather it looks for patterns. There is no part of GPT-3’s world model that corresponds
to ”salt.” Rather it has digested a large corpus of text in which words like ”salt” and
”sugar” and ”salty” and so on appear and GPT-3 stores associations from which it can
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make predictions. It is not clear that it is representing information in the way described
by the paper.

I did not understand the paper’s model of a ”neuronal circuit.” The paradigm in my
mind may be sufficiently different from the one that the paper relies on that I could
not make the mapping from what I understand of GPT-3 to what I understand of the
paper’s ideas. I don’t understand the proposed implementation. This could simply be a
result of my lack of understanding of the domain. Is GPT-3 an AI? The wikipedia page
describes it as ”a languagemodel” but cites people who call it an AI. This Forbes article,
What Is GPT-3 And Why Is It Revolutionizing Artificial Intelligence?, argues it is an AI.

To help me understand how GPT-3 works, I asked some questions about the content of
the paper. The following interchanges are extracted from a transcript of a session. I’ve
changed the order of prompts and completions for clarity (and because I had not yet
learned how to save a session in progress). GPT-3’s responses to a question depends
on session context as well as its data model. It is also not deterministic, so if you
asked the same question you would probably not get identical results. I’ve found that
even when trying to repeat a sequence I’ve sometimes gotten wildly different results.
Nonetheless, all the responses that I attribute to GPT-3 came from GPT-3. I’ve also
made some comments between the transcript extracts.

> **How does GPT-3 represent the world?**

GPT-3 represents the world by storing information about the world in a database. This
information can be used to answer questions about the world, or to make predictions
about the future.

> **How is GPT-3 different from representational models?**

GPT-3 is different from representational models because it does not explicitly represent
concepts. Instead, it learns to recognize patterns in data and uses this knowledge to
make predictions.

> **How is its knowledge stored?**

GPT-3’s knowledge is stored in a database. This database can be used to answer
questions about the world, or to make predictions about the future.

> **When GPT-3 recognizes patterns in data, is that pattern stored in some way?**

GPT-3 does not explicitly store patterns that it recognizes in data. However, the knowl-
edge that it learns from these patterns is stored in a database. This database can be
used to answer questions about the world, or to make predictions about the future.

> **Is the idea of an ”inferred latent structure applicable to GPT-3?” If so, in what way?**

The idea of an ”inferred latent structure” is applicable to GPT-3 in the sense that GPT-3
can learn to recognize patterns in data. These patterns can be used to answer ques-
tions about the world, or to make predictions about the future.

(Besides asking questions, you can interact with GPT-3 by starting to type a response
and having GPT-3 complete what you started. This is called a ”completion” and is
actually how GPT-3 answers questions. Any answer is just the completion for the
question asked.
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To get GPT-3’s ”thoughts” on ”inferred latent structures” I typed this to prompt it: )

>**GPT-3’s inferred latent structures**

and got this completion

> ...are not always accurate. What can you do about this?

There is always a trade-off between the accuracy of a model and the interpretability of a
model. GPT-3’s latent structures are designed to be accurate, but they may not always
be interpretable. If you find that GPT-3’s latent structures are not always accurate, you
can try to increase the interpretability of the model by using a different model, or by
using a different method to learn the latent structures.

(Note: the ”What can you do about this question” appears to have been part of GPT-3’s
completion. This is surprising, but GPT-3 has done other surprising things in the past.
In any case, the completion continued with a response to GPT-3’s question)

Authors’ response to the gardeners
We would like to thank the gardeners for their very thoughtful summaries and critiques.
They point to numerous avenues that could be explored further. How to learn these
representations? To what extent is language necessary for representational content?
How to determine which concept is responsible for explaining which observations?
These are very complex questions and we do not have good answers for them, so we
will leave them open here.

We have mostly limited our editing of the manuscript to attempting to clarify one issue.
A few gardeners have described our approach as defining representations/concepts in
terms of other representations/concepts, which would end up being circular. This was
a fair reading of the text, but not what we originally had in mind. Therefore, we have
modified paragraph 5 (starting with “This leads us to the notion that...”) to try to clarify
this point.
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